
Mechanical Systems and Signal Processing 169 (2022) 108598

Available online 23 November 2021
0888-3270/© 2021 Elsevier Ltd. All rights reserved.

Deep-subwavelength interface states in mechanical systems 

Guobiao Hu a, Chunbo Lan b, Lihua Tang c, Yaowen Yang a,* 

a School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore 
b College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China 
c Department of Mechanical Engineering, University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand   

A R T I C L E  I N F O   

Keywords: 
Mass-spring systems 
Rod and beam 
Interface states 
Deep-subwavelength 
Quasi-static band gap 

A B S T R A C T   

Topological interface states in mechanical systems are the analogues of the edge modes in to
pological insulators from the field of condensed matter physics. The interface states produced and 
reported in the existing literature are located in the Bragg Scattering band gaps of phononic 
crystals. The corresponding frequencies of the interface states are thus high. This paper proposes a 
novel mechanical system that can produce an ultra-low frequency interface state in the deep- 
subwavelength region. Due to the periodic spring connections to the ground, a quasi-static 
band gap with a starting frequency of 0 Hz can be produced in the proposed system. The 
spring connections can be tuned to alter the polarization direction of the mode shape. Through a 
mass-spring model, the formation of an interface state in the quasi-static band gap is demon
strated. Moreover, it is found that by carefully configuring the spring connections to the ground, 
the interface state in the quasi-static band gap can be tuned to an arbitrarily low frequency. In 
addition, practical systems based on rod and beam structures are constructed following a similar 
design methodology. Theoretical analyses demonstrate that for the longitudinal/transverse wave 
mode in the topological rod/beam structure, a deep-subwavelength interface state can always 
form in the quasi-static band gap. The possibility of producing the deep-subwavelength interface 
state at an arbitrarily low frequency is also confirmed in a rod and a beam lattice system.   

1. Introduction 

In recent years, extensive research interests have been attracted by topological insulators [1–3] from the field of condensed matter 
physics. The bulk-edge correspondence and the topologically protected edge modes are the most interesting properties of topological 
insulators. Inspired by these discoveries in quantum physics, tremendous efforts have been devoted to developing mechanical ana
logues of topological insulators and exploring topological states in classical mechanics [4–15]. According to the literature review, 
topological acoustic/mechanical systems are often developed using sonic/phononic crystals based on their excellent wave manipu
lation capabilities. Topological interface states can be produced in the Bragg Scattering (BS) band gaps of carefully engineered 
phononic crystals. In the acoustic domain, based on the typical Su-Schrieffer-Heeger (SSH) model [16], Yang et al. [17] developed an 
acoustic analogue and demonstrated the formation of a topological interface state in the BS band gap of the acoustic system. Xiao et al. 
[18] prototyped an acoustic topological system and observed the interface state in the experimental study. In the mechanical domain, 
Pal et al. [19] implemented the topological concept in the design of an elastic plate. By an intentional design of two halves of the plate 
with different topological invariants, an edge wave of the frequency within the bulk band gap could propagate along the topological 
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interface. Muhammad et al. [20] designed a one-dimensional topological phononic crystal and theoretically investigated its longi
tudinal/transverse wave propagation. The interface states were predicted and identified through various means. 

Since the interface states reported in the aforementioned literature were formed in the BS band gaps, the corresponding frequencies 
of the interface states were high. For example, the interface mode of the proposed topological phononic crystal in [20] was 50.5 kHz, 
and the interface state of the topological system reported in [21] was formed at the frequency of 33.1 kHz. Instead of phononic crystals, 
Zhao et al. [22] explored the interface states in locally resonant metamaterials. Though they found that the interface states could never 
appear in locally resonant (LR) band gaps, the first BS band gap was produced below the LR band gap, and the frequency of the 
interface state formed in the first BS band gap was significantly decreased. More recently, Fan et al. [23] established a practical acoustic 
structure based on the idea in [22] and demonstrated the interface state through finite element simulation. To the best of the authors’ 
knowledge, there have been limited studies on producing low-frequency interface states in topological mechanical systems, which is of 
practical importance in applications such as vibration control, noise reduction and energh harvesting. In retrospect to the fundamental 
research of metamaterials, we can find a number of metamaterial models that can produce quasi-static band gaps (i.e., the band gap 
starts from 0 Hz) in the literature. For example, Lee et al. [24] experimentally found that an acoustic metamaterial tube with an array of 
side holes could generate a band gap for forbidding the propagation of sound waves below 450 Hz. Oh et al. [25] proposed a meta
material with subtle joint connections between neighbouring cells. A quasi-static band gap was produced due to the zero rotational 
stiffness of the proposed metamaterial. Hu et al. [26] introduced negative stiffness springs into the design of metamaterials and 
achieved quasi-static band gaps. Yu et al. [27] studied the dynamics of beams with periodic connections to the ground. It was proved 
that the connections to the ground introduced quasi-static band gaps in the investigated systems. Since ultra-low frequency band gaps 
can be produced, a question that naturally arises is: could interface states form in the quasi-static band gap? 

To answer the above question, a novel approach of producing arbitrarily low-frequency interface states in topological mechanical 
systems is explored in this paper. First, we present a means of producing quasi-static band gaps in periodic mechanical systems through 
the introduction of a series of spring connections to the ground. Subsequently, negative stiffness springs are alternatively used to alter 
the polarization directions of the mode shapes. Finally, supercell band structure and transmittance results are presented to demonstrate 
the formation of the interface states in the designed system. The effect of the negative stiffness on the interface state formation is 
discussed in detail. The rest of the work is organized as follows. In Section 2, the proposed design approach is introduced based on a 
mass-spring model. Practical structures designed by following the proposed approach are presented in Section 3. A rod system for 
longitudinal waveguiding and a beam system for transverse waveguiding are investigated. Conclusions are summarized in Section 4. 

2. Mass-spring model 

To demonstrate the approach of producing arbitrarily low-frequency interface states, a mass-spring chain is first considered, as 
shown in Fig. 1. The host chain consists of particles with uniform mass (M) that are successively linked by springs with identical 
constant (K). All the particles are connected to the ground through springs with constant k1 or k2. The governing equations of the two 
particles in a unit cell (marked in the dashed frame) can be written as: 

⎧
⎨

⎩

Mÿi + K
(
yi − yj− 1

)
+ K

(
yi − yj

)
+ k1yi = 0

Mÿj + K
(
yj − yi

)
+ K

(
yj − yi+1

)
+ k2yj = 0 (1)  

where y represents the displacement of the particle. The subscripts i and j indicate the left-hand side (LHS) and the right-hand side 
(RHS) particles in the unit cell, respectively. ÿ denotes the second derivative of y with respect to time. To generalize the study presented 
in the work, the following dimensionless parameters are introduced: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1 =
k1

K
α2 =

k2

K
Ωr =

ω
ωr

ỹi =
yi

L
ỹj =

yj

L
t̃ = ωrt

(2) 

Fig. 1. Schematic of the mass-spring chain with grounded springs.  

G. Hu et al.                                                                                                                                                                                                             



Mechanical Systems and Signal Processing 169 (2022) 108598

3

where ωr =
̅̅̅̅̅̅̅̅̅̅
K/M

√
, ω is the angular frequency of the wave that propagates in the mass-spring lattice system, and L is the lattice 

constant, i.e., the unit cell length. By non-dimensionlizing Eq. (1) then applying the Fourier’s transform, one obtains: 
⎧
⎨

⎩

− Ω2
r Yi +

(
2Yi − Yj− 1 − Yj

)
+ α1Yi = 0

− Ω2
r Yj +

(
2Yj − Yi − Yi+1

)
+ α2Yj = 0

(3)  

where Y is the dimensionless amplitude of ỹ. We assume the mass-spring chain to have an infinite number of particles. Applying the 
Bloch’s theorem to describe the periodicity yields: 

{
Yi = eIqYi− 1
Yj = eIqYj− 1

(4)  

where I =
̅̅̅̅̅̅̅
− 1

√
, and q is the wavenumber normalized with respect to the lattice constant. Substituting Eq. (4) into Eq. (3) gives: 

⎧
⎨

⎩

(
2 + α1 − Ω2

r

)
Yi −

(
1 + e− Iq)Yj = 0

−
(
1 + eIq)Yi +

(
2 + α2 − Ω2

r

)
Yj = 0

(5) 

To ensure the existence of non-trivial solutions, forcing the determinant of the coefficient matrix of Eq. (5) to be zero yields the 
dispersion relation for the elastic wave propagating in the mass-spring chain. 

Ω4
r − (α1 + α2 + 4)Ω2

r +α1α2 + 2(α1 + α2)+ 2(1 − cos(q) ) = 0 (6) 

For different combinations of α1 and α2, Fig. 2 presents the band structures of the corresponding mass-spring chains. It can be seen 
that when α1 = 0.1& α2 = 0.5 and α1 = 0.5& α2 = 0.1, the band structures are exactly the same, and two band gaps are observed. The 
second band gap in the high-frequency regime is closed when α1 = α2 and opened when α1 ∕= α2. Thus, it is easy to know that the 
second band gap is formed due to the Bragg Scattering mechanism [22]. The first band gap is formed by the local resonance mech
anism. The proof and the discussion about the formation mechanism are provided in Appendix I. 

Investigating the band topology by calculating the Zak phase can predict the existence of topological interface states [28–29]. To be 
more specific, whether a band gap supports the formation of topological interface states can be predicted by considering the cumu
lative effect of the topological properties of all the bands below the band gap [22]. However, because of the specialty of the system, no 
band exists below the first band gap. Another criterion of determining the existence of topological interface states is to check the 
eigenstate polarization at the band-edge points. The switching of the eigenstate polarization is the symptomatic of the existence of 
topological interface states. From Eq. (5), the amplitude ratio of the eigenstate on the acoustic band can be obtained as: 

Yi

Yj
=

(1 + e− Iq)
(
2 + α1 − Ω2

acoustic

) =
(1 + e− Iq)/2

⎛

⎝1 +
(α1 − α2 − 4)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(α1 − α2)

2+8(1+cos(q) )
√

4

⎞

⎠

(7) 

Note that the lower edge of the first band occurs at q = 0. Substituting it into Eq. (7) gives: 

Fig. 2. Band structure of the mass-spring chain for (a) α1 = 0.1 and α2 = 0.5; (a) α1 = 0.5 and α2 = 0.5; (a) α1 = 0.5 and α2 = 0.1.  
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Yi

Yj
=

(1 + e− Iq)
(
2 + α1 − Ω2

r

)

⃒
⃒
⃒
⃒
⃒

q=0

=
1

(

1 +
(α12 − 4)+

̅̅̅̅̅̅̅̅̅̅
α2

12+16
√

4

) (8)  

where α12 = α1 − α2. It is easy to prove that: 
{

α12 > 0 Yi/Yj < 1
α12 < 0 Yi/Yj > 1 (9) 

Therefore, one knows that if α1 ∕= α2, swapping α1 and α2 will lead to a different amplitude ratio of the eigenstate at the edge point 
just above the first band gap. Similarly, the amplitude ratio of the eigenstate on the optical band can be obtained as: 

Yi

Yj
=

(1 + e− Iq)
(

2 + α1 − Ω2
optical

) =
(1 + e− Iq)/2

⎛

⎝1 +
(α1 − α2 − 4)−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(α1 − α2)

2+8(1+cos(q) )
√

4

⎞

⎠

(10) 

The eigenstate properties at the edge points of the optical band can then be evaluated as well. The evolutions of the aamplitude 
ratios of the eigenstates on the acoustic and optical bands are provided in Appendix II, from which one can easily identify the aam
plitude ratios of the eigenstates at the band-edge points. Table 1 summarizes the eigenstate properties at the band-edge points. It is 
worth noting that there is no band below the first band gap, which means there is no corresponding dynamic eigenstate. In other words, 
the lower bound of the first band gap corresponds to the static state of the system. Fig. 3 presents the graphical demonstration of the 
eigenstates listed in Table 1, which reveals more vividly the polarization transition at the band-edges. 

The polarization transition observed at the band-edges indicates the topology inversion in the two chain systems with α1 and α2 
being swapped. Therefore, it can be inferred that when the two chain systems with different topology properties are connected, to
pological interface states will appear in the two band gaps. 

Inspired by the results in [26,30] that negative stiffness springs could generate quasi-static band gaps, in this work, we assume that 
α2 (i.e., k2) could be tuned to negative. If α2 < 0, α1 − α2 is definitely positive. After swapping the values of α1 and α2, α1 − α2 will 
definitely become negative. Therefore, according to the theory presented above, it can be predicted that the band gaps still support the 
formation of interface states. A negative stiffness device could be realized using a precompressed spring [31], a buckled beam [32], or a 
shunt circuit piezoelectric transducer [26]. However, negative stiffness is often related to physical instability. Before proceeding with 

Table 1 
Eigenstate properties at the band-edge points.    

α12 < 0  α12 > 0  

1st Band gap Static Yi = Yj = 0  Yi = Yj = 0  
S1 Yi/Yj > 1  Yi/Yj < 1  

2nd Band gap S2 Yi/Yj → ∞  Yi/Yj → 0  
S3 Yi/Yj → 0  Yi/Yj → ∞   

Fig. 3. Graphical demonstration of the eigenstates at the band-edge points.  
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the analysis, we need to ascertain the tunable range of α2 to secure the system stability. For Eq. (6), the solutions can be derived as: 

Ω2
r =

(α1 + α2 + 4) ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α1 − α2)
2
+ 8(1 + cos(q) )

√

2
(11) 

Once the solution of Ωr has an imaginary part, it indicates the system becomes unstable. To ensure Ωr only have real solutions, the 
right-hand side of Eq. (11) needs to be positive. For the term in the square root operator, we easily know that 

max
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α1 − α2)
2
+ 8(1 + cos(q) )

√ )

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α1 − α2)
2
+ 16

√

(12) 

Therefore, the condition of ensuring a positive value at the right-hand side of Eq. (11) becomes: 

α2⩾ −
2α1

α1 + 2
(13) 

We employed the above method to derive the dispersion relation (i.e., Eq. (6)), since it can ease the comparison with the solution of 
the typical metamaterial (i.e., Eq. (43)) and the derivation of the explicit expression for the stability condition. However, when dealing 
with a supercell lattice later on, the above method will be difficult to apply because the order of the corresponding coefficient matrix 
will become quite high and the resultant determinant expression will be complex. Therefore, the transfer matrix method (TMM) is 
introduced to facilitate the subsequent supercell analysis. 

According to the schematic presented in Fig. 4, we can obtain the force/displacement transfer relationship between the left and 
right-hand side of a unit cell: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− Ω2
r YL + (YL − YI) + α1YL = − FL

FI = (YI − YL)

− Ω2
r YI + (YI − YR) + α2YI = − FI

FR = (YR − YI)

(14)  

where F denotes the dimensionless force amplitude, and Y denotes the amplitude of ỹ that follows the same nondimensionlization 
given in Eq. (2). Writing Eq. (14) in the matrix form gives: 

[
FR
YR

]

=

⎡

⎣
1 + α2 − Ω2

r α1 − Ω2
r +

(
α2 − Ω2

r

)(
1 + α1 − Ω2

r

)

2 + α2 − Ω2
r α1 − Ω2

r +
(
1 + α2 − Ω2

r

)(
1 + α1 − Ω2

r

)

⎤

⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
T

[
FL
YL

]

(15) 

T is the transfer matrix. For a supercell lattice, the corresponding total transfer matrix can be obtained from: 
[

FLHS
YLHS

]

= T1T2…TN⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
T∗

[
FRHS
YRHS

]

(16)  

where T1 – TN represent the transfer matrices of each individual cells that constitute the supercell lattice. The subscripts LHS and RHS 
denote the left-hand side and the right-hand side ends of the supercell lattice, respectively. To compute the band structure of the 
supercell lattice, we apply the Bloch’s theorem to describe the periodicity. Conforming the transfer matrix T* to the periodic condition, 
i.e., eIqI (where I is the identity matrix), an eigenvalue problem is obtained: 

Fig. 4. Schematic of a unit cell of the mass-spring chain with connections to the ground.  
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⃒
⃒T* − eIqI

⃒
⃒ = 0 (17) 

Solving Eq. (17) yields the relationship between Ωr and q, i.e., the dispersion relation. 
To consider a finitely long lattice and calculate its transmittance, one can replace the periodic boundary condition by an appro

priate condition, such as: 
{

YLHS = 1
FRHS = 0 (18) 

We assume the excitation is fed from the left end of the supercell lattice, and its right end is let free. Substituting Eq. (18) into Eq. 
(16), YRHS and FLHS can be solved. Thus, the transmittance, i.e., τ, could be computed in the unit of dB using the following formula: 

τ = 20log10

(
|YRHS|

|YLHS|

)

(19) 

A supercell lattice that contains 20 cells is constructed, as shown in Fig. 5. The left 10 cells are configured with α1 = 0.5 and α2 =

-0.3. The right 10 cells are configured with α1 = -0.3 and α2 = 0.5. 
Fig. 6 shows the band structure of the supercell lattice. The band structure of an ordinary lattice constituted by uniform unit cells is 

also provided for comparison. It can be found that the grey-coloured passband curves of the supercell lattice spread over almost the 
same frequency ranges as those of the ordinary lattice constituted by uniform unit cells. This is because the unit cell components that 
constitute the supercell lattice actually have the same band structure pattern as that marked in blue in Fig. 6. However, different from 
the ordinary lattice, several red-coloured flat bands appear in the first and second band gaps of the supercell lattice. These flat bands 
are the indications of the interface states. Fig. 7(a) presents the calculated transmittance of a single supercell lattice using Eq. (19). The 
boundary conditions of the supercell lattice are demonstrated in Fig. 7(b) when the excitation is applied from different directions. It is 
noted that at the same frequencies (i.e., those red-coloured flat lines in Fig. 6 predicted by the supercell band structure analysis, we 
observe several response peaks formed as the results of interface states. It is worth mentioning that the mass-spring lattice considered 
in Fig. 6 is an infinitely long system, or in other words, a travelling wave system. However, the mass-spring lattice considered in Fig. 7 
(a) is a finitely long system, i.e., a standing wave system. It has a finite number of eigenfrequencies, and thus a finite number of 

Fig. 5. Schematic of the supercell mass-spring lattice with the interface designed at the middle.  

Fig. 6. Band structure of the supercell mass-spring lattice that contains 20 cells. The left 10 cells are configured with α1 = 0.5 and α2 = − 0.3. The 
right 10 cells are configured with α1 = − 0.3 and α2 = 0.5. The blue solid line denotes the band structure of an ordinary lattice constituted by uniform 
unit cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. (a) The transmittance of a single supercell mass-spring lattice with 20 cells. The black solid and the blue dashed lines denote the results 
computed when the excitation is fed from the left and the right ends, respectively. The red arrows indicate the interface states formed in the band 
gaps. (b) The boundary conditions of the mass-spring lattice when the excitation is applied from different directions. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Displacement distribution along the supercell mass-srping lattice with 20 cells: (a) interface state A; (b) interface state B; (c) interface state C.  
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transmittance peaks. The eigenfrequencies demonstrated in Fig. 6 cannot be related to those transmittance peaks in Fig. 7(a) since they 
represent different systems. Nonetheless, we can predict the band gap and the formation of interface states in the band structure 
analysis based on the infinitely long system assumption and the transmittance analysis based on the finitely long system. 

For the three interface states illustrated in Fig. 7(a), we plot the corresponding displacement distributions along the supercell lattice 
in Fig. 8. The vertical axis represents the normalized displacement with respect to the maximum one of all the oscillators in the 
supercell lattice. It can be seen that the displacement distributions for interface state A (Fig. 8(a)) and interface state B (Fig. 8(b)) are 
similar, that is, the oscillators near the middle interface have the largest displacement amplitudes. This indicates that the vibration 
energy is localized at the interface of the supercell lattice since the kinetic energy of an oscillator is proportional to the square of its 
displacement amplitude. However, for interface state C (Fig. 8(c)), the energy is localized at both edges of the supercell lattice. This is 
because, from the perspective of the supercell lattice under the assumption of periodic condition, the supercell lattice duplicates 
periodically in the geometric space [28]. Therefore, both edges of the supercell lattice are also the geometric interfaces where the 
lattice pattern takes a change. Since the interface states produced in the high-frequency regimes are common and have been widely 
reported by researchers in many other topological systems, hereinafter, we only focus on investigating the deep-subwavelength (DS) 
interface state that is formed in the first low-frequency band gap. 

As the first band gap starts from 0 Hz, it is naturally wondered that whether it is possible to tune the DS interface state to arbitrarily 
low frequency. To answer this question, a parametric study is conducted to investigate the dependence of the DS interface state on α2. 
We keep α1 unchanged since the introduction of the negative stiffness α2 is the key for producing the DS interface state. Fig. 9 shows the 
parametric study result. The brown and blue dots denote the real and imaginary parts of the solutions, respectively. According to the 
stability criterion, once the eigenfrequency solution has a negative imaginary part, it indicates that the system loses stability. From 
Fig. 9, it is learned that to ensure system stability, α2 should never be tuned smaller than − 0.33. Note that this critical value is different 
from that calculated using Eq. (13) (i.e., − 0.4). This is because Eq. (13) only applies for an ordinary lattice with uniform unit cells 
(Fig. 1, and the result presented in Fig. 9 (i.e., − 0.33) is for the supercell lattice that contains mixed unit cells. The stability analysis of 
the supercell lattice is similar to that of the unit cell (i.e., Eq. (13)) and one can follow the similar procedures, since the basic principle 
for determining the stability is the same. 

One can also note in Fig. 9 that with the decrease of α2, the corresponding frequency of the DS interface state keeps decreasing. 
When α2 approaches the critical value − 0.33, the frequency of the DS interface state becomes quasi-zero. Therefore, the proposed 
mass-spring topological chain can produce the desired interface state for ultra-low frequency applications. Besides, according to [5], 
interface states are normally classified into two categories depending on their working frequency domains: 1) the dynamic type that 
refers to the ones being produced at infinite frequencies; 2) the quasi-static type that refers to the ones working at zero frequency. 
Theoretically, the proposed mass-spring topological chain system can transform from the dynamic type to the quasi-static type by 
controlling the parameter α2. In addition, it is observed that with the increase of α2, the frequency of the DS interface state increases 
and merges into the bulk states when α2 = 0.5 = α1. The interface states in the second band gap also exhibit similar behaviours. These 
phenomena agree with the previous analysis based on Eqs. (7)-(10). 

3. Practical structures 

In this section, the previous study based on the mass-spring model is extended and applied to design practical structures for 
producing deep-subwavelength interface states. The following studies focus on the proof-of-concept of the deep-subwavelength 
interface states in continuous systems. Therefore, the realistic implementation of the negative springs is not discussed in details. 

Fig. 9. Evolution of interface states under the influence of α2. The brown dots denote the real part solutions and the blue dots denote the imaginary 
part solutions. The red dots denote the real part solutions that are associated with interface states. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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Appendix III presents two conceptualized physical models and more explanations about the potential solutions for realizing negative 
springs. 

3.1. Longitudinal wave propagation in rod waveguide 

First, a rod that supports longitudinal wave propagation is considered. As shown in Fig. 10, a collection of springs are introduced to 
connect the rod to the ground periodically. 

The governing equation of the longitudinal wave propagating in the rod can be written as: 

EAcs
∂2u(x, t)

∂x2 − ρAcs
∂2u(x, t)

∂t2 = 0 (20)  

where E is the Young’s modulus of the rod material, ρ is the material density, Acs is the cross-sectional area of the rod, and u is the axial 
displacement of the rod. It is worth noting that, in general, the dynamic modes of a rod and a beam (that will be investigated later) can 
involve both tensional (longitudinal) and bending (transverse) displacement components. Under the small deformation assumption, 
the tensional and bending deformation can be decoupled. In other words, we will only consider the tensional deformation of the rod 
and the transverse deformation of the beam in this study. By introducing the definitions of the following dimensionless parameters: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ΩL =
ω
̅̅̅̅̅̅̅̅̅̅̅̅̅
EAcs

ρAcsL2

√ α1,L =
k1(

EAcs

L

) α2,L =
k2(

EAcs

L

)

x̃ =
x
L

ũ =
u
L

t̃ = t

̅̅̅̅̅̅̅̅̅̅̅̅̅
EAcs

ρAcsL2

√
(21) 

Eq. (20) can be non-dimensionlized into the form as: 

∂2ũ
(
x̃, t̃
)

∂x̃2 −
∂2ũ
(
x̃, t̃
)

∂̃t2 = 0 (22) 

Using the variable separation method, one can write ũ
(
x̃, t̃
)

as 

ũ
(
x̃, t̃
)

= U(x̃)exp
(
Ĩt
)

(23)  

where 

U(x̃) = Acos(ΩLx̃)+Bsin(ΩLx̃) (24) 

Applying the force and displacement continuity conditions at the interface where the spring k1 is attached, one gets: 
⎧
⎪⎨

⎪⎩

Ul
i(1) = Ur

j (0)

∂Ul
i(1)

∂x̃
=

∂Ur
j (0)
∂x̃

− α1Ur
j (0)

(25) 

Substituting Eq. (24) into Eq. (25) and rewriting the equations into the matrix form, one obtains: 

H1LΨl
i = K1LΨr

j (26)  

where Ψl
i =

[
Al

i Bl
i
]T
,Ψr

j =
[
Ar

j Br
j
]T
,H1L =

[
cos(ΩL) sin(ΩL)

− sin(ΩL) cos(ΩL)

]

,K1L =

⎡

⎣
1 0

−
α1,L

Ω
1

⎤

⎦. 

Similarly, the transfer matrix relation is obtained based on the continuity conditions at the interface where the spring k2 is attached. 

Fig. 10. Longitudinal wave propagates in a rod with periodic spring connections to the ground.  

G. Hu et al.                                                                                                                                                                                                             



Mechanical Systems and Signal Processing 169 (2022) 108598

10

H2LΨr
j = K2LΨl

i+1 (27)  

where Ψr
j =

[
Ar

j Br
j
]T
,Ψl

i+1 =
[
Al

i+1 Bl
i+1
]T
,H2L =

[
cos(ΩL) sin(ΩL)

− sin(ΩL) cos(ΩL)

]

,K2L =

⎡

⎣
1 0

−
α2,L

ΩL
1

⎤

⎦. Thus, the left and the right ends of a 

unit cell are related: 

Ψl
i+1 = K− 1

2L H2LK− 1
1L H1L

⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟
TL

Ψl
i (28) 

On the other hand, according to the Bloch’s theorem, the periodic condition implies: 

Ψl
i+1 = eIqΨl

i (29) 

Conforming Eq. (28) to Eq. (29) yields a standard eigenvalue problem: 
⃒
⃒TL − eIqI

⃒
⃒ = 0 (30) 

To compute the transmittance, one only needs to replace the periodic boundary condition by an appropriate condition. In this work, 
we assume that the rod lattice is under the fixed-free condition. 

In the following study, we consider a rod lattice system with the parameters listed in Table 2. According to the defined dimen
sionless parameters in Eq. (21), one can calculate that α1,L = 10 and α2,L = - 0.5 . 

For α1,L = 10 and α2,L = - 0.5, the band structure of the longitudinal waveguide constituted by periodically grounded rods is 
calculated using the analytical method and the finite element method. The results are plotted and compared in Fig. 11. A good 
agreement is observed between the results of the two methods. When the system parameters are tuned to α1,L = - 0.5 and α2,L = 10, 
the band structure of the longitudinal waveguide is exactly the same. However, the band-edge states for the two configurations, as 
illustrated on the right-hand side of Fig. 11, are different. The polarization directions of the mode shapes are inversed. Note that the 
first band gap starts from 0 Hz. It implies that at the lower bound (i.e., 0 Hz) of the first band gap, the wave modes in both config
urations undergo the quasi-static free motion. Therefore, from the lower to the upper bound of the first band gap, the wave modes in 

Table 2 
Geometric and material parameters of the rod and the spring constants.  

Parameters Values Parameters Values 

Rod segment length 5 cm Young’s modulus 200 GPa 
Rod width 1 cm Mass density 7850 kg/m3 

Rod thickness 1 cm k1 4×109N/m 
k2 − 2×108N/m    

Fig. 11. Comparison of the analytical method and finite element method calculated band structures of a rod with periodic spring connections to the 
ground. The band-edge states of the longitudinal waveguide when the system parameters are tuned to (α1,L = 10 & α2,L = - 0.5) and 
(α1,L = - 0.5 & α2,L = 10), respectively. 
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the two configurations, separately, evolve toward different polarization patterns. It is inferred that the polarization inversion could 
open the opportunity to form an interface state in a system that consists of mixed configurations with different polarization features on 
the left and right halves. 

To produce a DS interface state in the rod waveguide, a supercell rod lattice shown in Fig. 12 is constructed with the left-hand side 
five cells being tuned of α1,L = 10 & α2,L = - 0.5 and the right-hand side five cells of α1,L = - 0.5 & α2,L = 10. Fig. 13 shows the 
band structure of the supercell rod lattice. The solid blue lines denote the passbands of an ordinary rod waveguide with a uniform 
configuration. As expected, the grey-coloured passbands of the supercell lattice spread over almost the same frequency ranges as those 
blue-coloured passbands of the uniform waveguide. Similar to the phenomenon in the mass-spring model, several red-coloured flat 
bands appear in the band gaps of the supercell rod lattice, indicating the formation of interface states. Since the DS interface state (at 
the frequency of ΩL = 0.67, ≈ 10800 Hz for the system with given parameters listed in Table 2 is the most interested, its corresponding 
mode shape is examined in Fig. 14. The colour depth represents the displacement amplitude. The deeper the colour, the larger the 
displacement amplitude is. The mode shape clearly demonstrates that the energy concentrates at the interface of the supercell rod 
lattice. 

Assuming the ground is at the absolutely static status, and the base excitation only comes from the left end, the transmittance of a 
single supercell rod lattice (i.e., with finitely long length) is calculated and plotted in Fig. 15(a). When the excitation is input from the 
right end, the transmittance spectra are similar, thus they are not presented in Fig. 15(a) to avoid confusion. The black solid and blue 
dash-dotted lines represent the transmittances of the tip and the middle of the supercell rod lattice, respectively. In the valleys of the 
transmittance curve which are formed due to the band gap effect, resonant peaks (i.e., ΩL = 0.675, 1.855, 3.84, 4.965) are found at the 
identical frequencies of the interface states predicted by the supercell band structure analysis (i.e., Fig. 13. However, though there 
exists a resonant peak in the first band gap formed valley, the absolute transmittance value is actually small. 

Fig. 12. Schematic of the supercell rod lattice with the interface designed at the middle.  

Fig. 13. Band structure of the supercell rod lattice that consists of 10 cells. The left-hand side five cells with parameters of α1,L = 10 & α2,L = -0.5; 
and the right-hand side five cells with parameters of α1,L = -0.5 & α2,L = 10. 

Fig. 14. Mode shape of the supercell rod lattice at the DS interface state.  
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Fig. 15(b) presents the longitudinal displacement distribution of the supercell rod lattice at the DS interface state. Since the 
interface state formed resonant peak is bogged down in the first deep valley, the displacement amplitudes along the first 4 cells and the 
latter 6 cells of the supercell rod lattice are scaled by different factors to intentionally demonstrate the energy distribution profile 
around the interface. Along the first 4 cells, the vibration energy quickly decreases due to the vibration suppression effect of the band 
gap. For a conventional non-topological lattice, the vibration energy along the latter 6 cells should decrease monotonously. However, 
due to the interface state formation, along the rest of the supercell rod lattice, the energy appears to stream to the middle interface. 

In a different circumstance, we regard the ground as the general base. The left end of the supercell rod lattice is rigidly linked to the 
general base as well. The detailed differences between this type of base excitation condition and the previous one, which considers the 
ground at the absolutely static status, are explained in Appendix IV. When an excitation is applied, Fig. 16(a) presents the trans
mittance of the supercell rod lattice. It is found that under this situation, the first valley disappears in the transmittance spectrum. 
Nonetheless, over the first band gap frequency range, only an unnoticeable peak (which can not be observed in the figure at the current 
scale) is formed in the transmittance spectrum measured at the tip (i.e., right-hand side end) of the supercell rod lattice. On the other 
hand, by examining the middle interface of the supercell rod lattice, a sharp resonant peak (i.e., at ΩL = 0.67) in the transmittance 
spectrum is observed. The sharp resonant peak is just at the same frequency of the interface state predicted in Fig. 13. Fig. 16(b) shows 
the corresponding longitudinal displacement distribution of the supercell rod lattice at that resonant frequency. Note that a consistent 
factor scales the displacement amplitudes along the entire supercell rod lattice. It can be seen that the displacement distribution strictly 
follows the mode shape of the interface state as presented in Fig. 14. Therefore, we can conclude that provided the topological structure 
is unchanged, the interface state still appears even if the excitation condition is varied. 

To investigate the dependence of the DS interface state of the supercell rod lattice, α1,L is kept unchanged. Fig. 17 reveals the 
evolution of the DS interface state as α2,L is varied in the negative regime. In consistency with the convention in Section 2, the brown 
and blue dots represent the real and imaginary parts of the solutions, respectively. Based on the principle of stability determination, 
one knows that α2,L should not be tuned smaller than − 0.9 for guaranteeing the system stability. Within the stable regime, it is noted 
that when α2,L keeps decreasing to approach the critical value − 0.9, the frequency of the DS interface state monotonously decreases 
until quasi-zero. Therefore, the conclusions for the mass-spring model are still valid for the rod model, i.e.: 1) the DS interface state 
could be tuned to arbitrarily ultra-low frequency; 2) the DS interface state in the topological rod lattice can transform from the dynamic 
type to the quasi-static type. 

Fig. 15. Under the base excitation from the left end of a single supercell rod lattice and the ground is at the absolutely static status. (a) The 
transmittance of the single supercell rod lattice; (b) the displacement distribution contour at the first resonant peak of the transmittance spectrum. 
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3.2. Transverse wave propagation in beam waveguide 

In the second case, the transverse wave propagation in a beam structure is considered. The beam is periodically connected to the 
ground by vertically placed springs, as demonstrated in Fig. 18. 

Based on the Euler’s beam theory, the governing equation of the transverse vibration is written as: 

ρAcs
∂2w(x, t)

∂t2 +EIcs
∂4w(x, t)

∂x4 = 0 (31)  

where Ics is the second moment of area of the beam, and w is the transverse displacement of the beam. The below dimensionless 
parameters are defined: 

Fig. 16. Under the base excitation from the left end of a single supercell rod lattice and the ground is regarded as the general base. (a) The 
transmittance of the single supercell rod lattice; (b) the displacement distribution contour at the first resonant peak of the transmittance spectrum. 

Fig. 17. Evolution of interface states under the influence of α2,L. The brown dots denote the real part solutions and the blue dots denote the 
imaginary part solutions. The red dots denote the real part solutions that are associated with interface states. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

G. Hu et al.                                                                                                                                                                                                             



Mechanical Systems and Signal Processing 169 (2022) 108598

14

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΩT =
ω
̅̅̅̅̅̅̅̅̅̅̅̅̅

EIcs

ρAcsL4

√ α1 =
k1

(
EIcs

L3

) α2 =
k2

(
EIcs

L3

)

x̃ =
x
L

w̃ =
w
L

t̃ = t
̅̅̅̅̅̅̅̅̅̅
EIcs

ρAL4

√
(32) 

The beam governing equation, i.e., Eq. (31), is non-dimensionlized as: 

∂2w̃
(
x̃, t̃
)

∂̃t2 +
∂4w̃
(
x̃, t̃
)

∂x̃4 = 0 (33) 

We separate the variable w̃
(
x̃, t̃
)

in the form as W(x̃)exp
(
Ĩt
)
, where 

W (̃x) = Acos(βx̃)+Bsin(βx̃)+Ccosh(βx̃)+Dsinh(βx̃) (34) 

in which β4 = Ω2
T. The slope is proportional to the first derivative of the deflection. The shear force and the moment are pro

portional to the third and second derivatives of the deflection, respectively. The internal shear force in the beam is required to balance 
the external force applied by the spring that is connected to the ground. Therefore, the displacement, slope, moment, and force 
continuity conditions at the interface where the spring k1 is attached are formulated as [33]: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wl
i (1) = Wr

j (0)

∂Wl
i (1)

∂x
=

∂Wr
j (0)

∂x

∂2Wl
i (1)

∂x2 =
∂2Wr

j (0)
∂x2

∂3Wl
i (1)

∂x3 =
∂3Wr

j (0)
∂x3 + α1Wr

j (0)

(35) 

Substituting Eq. (34) into Eq. (35) yields: 

H1Ψl
i = K1Ψr

j (36)  

where Ψl
i =

[
Al

i Bl
i Cl

i Dl
i
]T , Ψr

j =
[
Ar

j Br
j Cr

j Dr
j
]T , 

H1 =

⎡

⎢
⎢
⎣

cos(β) sin(β) cosh(β) sinh(β)
− sin(β) cos(β) sinh(β) cosh(β)
− cos(β) − sin(β) cosh(β) sinh(β)
sin(β) − cos(β) sinh(β) cosh(β)

⎤

⎥
⎥
⎦K1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0

0 1 0 1

− 1 0 1 0
α1

β3 − 1
α1

β3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(37) 

Similarly, the continuity conditions at the interface where the spring k2 is attached are formulated as: 

H2Ψr
j = K2Ψl

i+1  

where Ψr
j =

[
Ar

j Br
j Cr

j Dr
j
]T , Ψl

i+1 =
[
Al

i+1 Bl
i+1 Cl

i+1 Dl
i+1
]T, H2 = H1, K2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0

0 1 0 1

− 1 0 1 0
α2

β3 − 1
α2

β3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 18. Transverse wave propagates in a beam with periodic spring connections to the ground.  
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The right and the left ends of a unit cell are thus related by: 

Ψl
i+1 = K− 1

2 H2K− 1
1 H1

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
TT

Ψl
i (38) 

When a transverse wave travels in the beam waveguide with infinite length, the geometric periodicity implies the below relation 
equation: 

Ψl
i+1 = eIqΨl

i (39) 

Mediating between Eq. (38) and Eq. (39) leads to a standard eigenvalue problem: 
⃒
⃒TT − eIqI

⃒
⃒ = 0 (40) 

Eq. (40) depicts the relation between the frequency and the wavenumber of the transverse wave that travels in the beam wave
guide. To consider a finitely long beam lattice, one needs to replace the periodic boundary condition by such as the fixed-free boundary 
condition, as we did for the mass-spring model. Table 3 lists the parameters of the beam and the constants of the springs. According to 
the defined dimensionless parameters (i.e., Eq. (32)), one can determine that α1,T = 5 and α2,T = -1. 

For the transverse waveguide tuned with parameters of α1,T = 5 and α2,T = -1, Fig. 19 presents the corresponding band structure. 
The finite element result is also provided, which tightly matches the analytical result. The band structure for the transverse waveguide 
with parameters of α1,T = − 1 and α2,T = 5 remains the same. However, the band-edge states for the two configurations are different. As 
demonstrated on the right-hand side of Fig. 19, the mode shape deflection directions are opposite for the two configurations. Due to the 
similar mechanism as explained for the longitudinal waveguide, the polarization inversion of the wave mode has the potential to be 
employed to produce an interface state in the first band gap of a well-engineered transverse waveguide. 

Following the same design strategy used before, a supercell beam lattice shown in Fig. 20 is constructed to form a DS interface state. 
There are 20 unit cells in total. The left 10 cells of the supercell lattice are uniformly configured with α1,T = 5 and α2,T = − 1. The right 
10 cells are consistently tuned with α1 = − 1 and α2 = 5. Fig. 21 shows the band structure analysis result of the supercell beam lattice. 
Just as in the previous models, the grey-coloured passbands of the supercell beam lattice span over almost the same frequency range as 

Table 3 
Geometric and material parameters of the rod and the spring constants.  

System parameters values System parameters values 

Beam segment length 5 cm Young’s modulus 200 GPa 
Beam width 1.4 cm Mass density 7850 kg/m3 

Beam thickness 2 mm k1 74667 N/m 
k2 − 14933 N/m    

Fig. 19. Comparison of the analytical method and finite element method calculated band structures of a beam with periodic spring connections to 
the ground. The band-edge states of the transverse waveguide when the system parameters are tuned to (α1,T = 5 & α2,T = - 1) and (α1,L = - 1 & 
α2,L = 5), respectively. 
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the blue-coloured passbands of the uniform beam lattice. Several red-coloured flat bands, which are the indications of interface states, 
appear in the band gaps of the supercell beam lattice. The DS interface state is formed at the frequency of ΩT = 0.65, which is about 
120.8 Hz for the system with the parameters given in Table 3. 

As the DS interface state (ΩT=0.65) in the ultra-low frequency band gap is of the most interest, we plot the corresponding mode 
shape of the supercell beam lattice in Fig. 22. A familiar energy localization phenomenon is observed at the geometric interface of the 
supercell beam lattice. 

Similar to Section 3.1, we first consider that the ground is at the absolutely static status, and the excitation is input from the left end 
of a single supercell beam lattice (i.e., with finite length). The transmittance of the supercell beam lattice is plotted in Fig. 23(a). As was 
foreseeable, we note a resonant peak in the transmittance spectrum at the interface state frequency (ΩT=0.65) predicted by the band 
structure analysis of the supercell beam lattice. Fig. 23(b) shows the displacement distribution along the supercell beam lattice at the 
DS interface state induced resonant frequency. Since the left end is the input terminal of the excitation, the high vibration energy 
distribution on the left end is easily understandable. Note that the displacement distributions along the first 7 cells and the subsequent 
13 cells are scaled by different factors. Otherwise, the entire beam displacement distribution would be almost flat, except around the 
left end from where the excitation is input. After the scaling treatment, it can be found that the vibration energy first decreases rapidly, 
then concentrates at the middle interface of the supercell beam lattice. The energy localization phenomenon at the middle interface can 

Fig. 20. Schematic of the supercell beam lattice with the interface designed at the middle.  

Fig. 21. Band structure of the supercell beam lattice that consists of 20 cells. The left-hand side 10 cells with parameters of α1,T = 5 & α2,T = -1; and 
the right-hand side 10 cells with parameters of α1,T = -1 & α2,T = 5. 

Fig. 22. Mode shape of the supercell beam lattice at the DS interface state. Note that the transverse displacement is scaled by a factor and does not 
reflect the true deformation. 
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Fig. 23. Under the base excitation from the left end of a single supercell beam lattice and the ground is at the absolutely static status. (a) The 
transmittance of the supercell rod lattice; (b) the displacement distribution contour at the first resonant peak of the transmittance spectrum. 

Fig. 24. Under the base excitation from the left end of a single supercell beam lattice and the ground is regarded as the general base. (a) The 
transmittance of the supercell rod lattice; (b) the displacement distribution contour at the first resonant peak of the transmittance spectrum. 
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be explained by the interface state mechanism. 
Subsequently, we consider another circumstance and regard the ground as the general base. The detailed differences between this 

type of base excitation condition and the previous one, which considers the ground at the absolutely static status, are explained in 
Appendix IV. Under a given base excitation, i.e., the inertial coordinate is vibrating, Fig. 24(a) presents the transmittance of the 
supercell beam lattice. Since the entire structure is under a field excitation, the first valley in the transmittance spectrum disappears. 
Although the band gap effect does not work under such excitation, over the corresponding frequency range in the transmittance 
spectrum measured at the tip of the supercell beam lattice, resonant peaks are prevented from being formed. However, when we 
measure the transmittance spectrum at the middle interface of the supercell beam lattice, a single sharp resonant peak is noted at ΩT =

0.65 where the band gap should have been located. The frequency that corresponds to the sharp resonant peak is just identical to the 
DS interface state frequency predicted in Fig. 21. To further unveil the formation mechanism of that resonant peak, the displacement 
distribution along the entire supercell beam lattice is examined in Fig. 24(b). The displacement amplitudes along the entire supercell 
beam lattice are scaled by a consistent factor. By comparing Fig. 24(b) with Fig. 22, it is evident that the resonance is induced by the 
activation of the DS interface state. In retrospect to the above analysis procedures, it is recognized that including the ground as the 
general base only alters the excitation condition. Therefore, it is not surprising to find that only the interface state can be activated over 
the first band gap frequency range, and only a corresponding resonant peak can form in the transmittance spectrum. 

Following the same procedure, we keep α1,T unchanged and vary α2,T to investigate its influence on the formation of the DS 
interface state. Fig. 25 presents the corresponding results. Again, the brown and blue dots, respectively, denote the real and imaginary 
parts of the solutions. By inspecting the imaginary part, it is easy to know that the stable regime of the supercell beam lattice is α2,T 

>− 1.46. Within the stable regime, one notes that with the decrease of α2,T, the DS interface state tends to form at a lower frequency. 
When α2,T is tuned to be very close to the critical value − 1.46, the DS interface state is almost transformed into the quasi-static type: the 
working frequency is nearly 0 Hz. 

4. Conclusions 

This paper has proposed a topological mechanical system for producing an ultra-low frequency interface state. A mass-spring model 
has been first adopted for proof-of-concept. All the mass particles in the chain have been proposed to be connected to the ground by 
springs. The dispersion relations of the mass-spring model and the supercell lattice have been derived. The band gap characteristics 
have been discussed, and the quasi-static band gap has been identified as the locally resonant type. The stability of the system has been 
examined. It has been found that within the stable regime, by making the topological invariants in the two halves of the mass-spring 
chain different, an interface state can be produced in the quasi-static band gap. Moreover, it has been proven that the interface state 
can be formed at an arbitrarily low frequency by carefully configuring the spring connections to the ground. We have also proposed 
two practical systems based on rod and beam structures. Using the transfer matrix method, the dispersion relations of the practical 
systems have been derived as well. Through modal analyses and frequency domain analyses, the deep-subwavelength interface states 
in both topological structures have been ascertained. The interface state formation behaviours in the mass-spring model and 
continuous rod and beam models have been found to be qualitatively similar: the corresponding frequency can be tuned to arbitrarily 
low frequency. Therefore, our study has provided an effective means for achieving deep-subwavelength interface states in mechanical 
systems. 

Fig. 25. Evolution of interface states under the influence of α2,T. The brown dots denote the real part solutions and the blue dots denote the 
imaginary part solutions. The red dots denote the real part solutions that are associated with interface states. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix I 

The first band gap in Fig. 2 is formed due to the local resonance mechanism. To help understand this, a similar but more typical 
locally resonant metamaterial (as shown in Fig. 26) is considered first. Instead of connecting to the ground, each particle in the host 
chain is attached with a local resonator of mass m. The motion equations of the particles in a representative unit cell can be written as: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mÿi + K
(
yi − yj− 1

)
+ K

(
yi − yj

)
+ k1(yi − zi) = 0

mz̈i + k1(zi − yi) = 0
Mÿj + K

(
yj − yi

)
+ K

(
yj − yi+1

)
+ k2

(
yj − zj

)
= 0

mz̈j + k2
(
zj − yj

)
= 0

(41)  

where z represents the displacement of the local resonator. By introducing two additional dimensionless parameters, i.e., ̃zj = zj/L and 
μ = m/M, we can non-dimensionlize Eq. (41). Applying the Fourier’s transform, we can obtain the non-dimensionlized Eq. (41) 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− Ω2
r Yi +

(
2Yi − Yj− 1 − Yj

)
+ α1(Yi − Zi) = 0

− μΩ2
r Zi + α1(Zi − Yi) = 0

− Ω2
r Yj +

(
2Yj − Yi − Yi+1

)
+ α2

(
Yj − Zj

)
= 0

− μΩ2
r Zj + α2

(
Zj − Yj

)
= 0

(42) 

Using the Bloch’s theorem to describe the periodicity and following the similar procedures, we obtain the dispersion relation of the 
elastic waves propagating in the locally resonant metamaterial: 

− Ω8 +

[

(α1 + α2 + 4) +
(α1 + α2)

μ

]

Ω6 −

⎧
⎪⎪⎨

⎪⎪⎩

[α1 α2 + 2(α1 + α2) + 2(1 − cos(q) ) ]

+
2(2 + α1)(α1 + α2)

μ +
α1 α2

μ2

⎫
⎪⎪⎬

⎪⎪⎭

Ω4

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
2α2

1α2 + (4α1 + 2 − 2cos(q) )(α1 + α2)
]

μ

+
2α2

1α2 + 4α1 α2

μ2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Ω2 −
4α2

1α2 + [2 − 2cos(q) ]α1 α2

μ2 = 0

(43) 

It is noted that when the mass of the local resonator, i.e., m, approaches positive infinite, μ becomes infinite, and Eq. (43) de
generates into Eq. (6). This complies with the fact that the mass of the ground foundation is infinite. In other words, the mass-spring 

Fig. 26. Schematic of a locally resonant metamaterial.  

G. Hu et al.                                                                                                                                                                                                             



Mechanical Systems and Signal Processing 169 (2022) 108598

20

chain with connections to the ground can be regarded as a special type of metamaterial with the local resonator mass of infinity. On the 
other hand, according to the fundamental mechanism of locally resonant metamaterials, once the effective mass becomes negative, the 
acceleration appears in the opposite direction to the applied force, and the response amplitude would be reduced. From this 
perspective, we can derive and examine the effective mass of the particle that is connected to the ground through a spring. If the 
effective mass of the grounded particle is negative in the first band gap, then we can conclude that it is a local resonance induced band 
gap. We first consider an ordinary mass-spring model without spring connections to the ground. The dispersion relation can be derived 
to be: 

Ω2
r =

2[1 − cos(q) ]
M̂eff

(44)  

where M̂eff = Meff/M, and Meff is the mass of the particle. Subsequently, we intentionally force the ordinary mass-spring model to have 
the same dispersion relation as Eq. (6). The effective mass of the particle is required to be: 

M̂eff = (α1 + α2 + 4) − Ω2
r −

α1α2 + 2(α1 + α2)

Ω2
r

(45) 

According to Eq. (45), one knows that when Ωr < Ωcritical, M̂eff is negative. 

Ωcritical =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α1 + α2 + 4) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α1 + α2 + 4)2
− 4[α1α2 + 2(α1 + α2) ]

√

2

√
√
√
√

(46) 

Fig. 27 plots the dimensionless effective mass of the particle calculated using Eq. (45). The first band gap range identified from the 
band structure presented in Fig. 2(a) is marked as the coloured area in Fig. 27. It can be seen that the effective mass of the particle just 
becomes negative within the first band gap area. Hence, it is clearly confirmed that the first band gap is formed by the locally resonant 
mechanism. 

Appendix II 

Based on Eqs. and, the amplitude ratios of the eigenstates on the acoustic and optical bands are plotted out in Fig. 28, from which 
one can identify the characteristics of the eigenstates at the band-edge points. 

Appendix III 

Two conceptualized physical models of the proposed topological beam with deep subwavelength interface states are demonstrated 
in Fig. 29. 

In the first conceptualized physical model shown in Fig. 29(a), the negative springs are realized using the preloaded three-spring 
devices [34]. In practical applications, a three-spring device exhibits a negative stiffness behaviour only over a small range of dis
placements, which is a limitation that needs to be considered. Fig. 29(b) presents another possible design. The negative springs are 
realized by using negative capacitor shunted piezoelectric elements [35]. In this design, a ‘spring’ connection is not realized at a 

Fig. 27. Dimensionless effective mass of the particle versus dimensionless frequency.  
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discrete point, but over a small portion of the beam. However, the equations presented in this paper are derived by assuming that a 
spring connection only acts at a discrete point on the beam. Hence, modifications are needed to take account of this effect. Moreover, 
the governing equation of the ‘spring’ constraint also need to be modified, since the ‘spring’ is realized by a continuous element rather 
than an ideal lumped element. 

  )d( )c(

  )b( )a(

Fig. 28. Amplitude ratios of the eigenstates on the acoustic band: (a) α1 = 0.1 and α2 = 0.5, (b) α1 = 0.5 and α2 = 0.1; amplitude ratios of the 
eigenstates on the optical band: (c) α1 = 0.1 and α2 = 0.5, (d) α1 = 0.5 and α2 = 0.1. Note that in (a) and (d), when q approaches π, the imaginary 
part approaches infinity. 

Fig. 29. Conceptualized physical models of the proposed topological beam with grounded springs realized using (a) pre-loaded three-springs de
vices; (b) negative capacitor shunted piezoelectric elements. 
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Appendix IV 

Fig. 30(a) and (b) graphically illustrate the two types of base excitation conditions. It can be seen that under the excitation con
dition illustrated in Fig. 30(a), the base excitation comes only from the left-hand side of the supercell beam lattice. However, for the 
excitation condition shown in Fig. 30(b), the springs connected to the ground are also subjected to the same base excitation, and the 
ground is regarded as a general base. 

References 

[1] J.E. Moore, The birth of topological insulators, Nature 464 (7286) (2010) 194–198. 
[2] S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, Y. Ando, Topological superconductivity in Cu x Bi 2 Se 3, Physical review letters 107 (21) (2011), 

217001. 
[3] Schindler, F., A.M. Cook, M.G. Vergniory, Z. Wang, S.S. Parkin, B.A. Bernevig, and T. Neupert, Higher-order topological insulators. Science advances, 2018. 4(6): p. 

eaat0346. 
[4] A. Foehr, O.R. Bilal, S.D. Huber, C. Daraio, Spiral-based phononic plates: From wave beaming to topological insulators, Physical review letters 120 (20) (2018), 

205501. 
[5] L.i. Xin, Y.u. Siyuan, L. Harry, L.u. Minghui, C. Yanfeng, Topological mechanical metamaterials: A brief review, Current Opinion in Solid State and Materials 

Science 24 (5) (2020) 100853, https://doi.org/10.1016/j.cossms.2020.100853. 
[6] A. Ghatak, M. Brandenbourger, J. van Wezel, C. Coulais, Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical 

metamaterial, Proceedings of the National Academy of Sciences 117 (47) (2020) 29561–29568. 
[7] H. Fan, B. Xia, L. Tong, S. Zheng, D. Yu, Elastic higher-order topological insulator with topologically protected corner states, Physical review letters 122 (20) 

(2019), 204301. 
[8] S.H. Mousavi, A.B. Khanikaev, Z. Wang, Topologically protected elastic waves in phononic metamaterials, Nature communications 6 (1) (2015) 1–7. 
[9] D.J. Apigo, W. Cheng, K.F. Dobiszewski, E. Prodan, C. Prodan, Observation of topological edge modes in a quasiperiodic acoustic waveguide, Physical review 

letters 122 (9) (2019), 095501. 
[10] G. Ma, M. Xiao, C.T. Chan, Topological phases in acoustic and mechanical systems, Nature Reviews Physics 1 (4) (2019) 281–294. 
[11] R. Süsstrunk, S.D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Science 349 (6243) (2015) 47–50. 
[12] J. Zheng, Z. Luo, C. Jiang, J. Gao, Robust topology optimization for concurrent design of dynamic structures under hybrid uncertainties, Mechanical Systems 

and Signal Processing 120 (2019) 540–559. 
[13] L. Sirota, D. Sabsovich, Y. Lahini, R. Ilan, Y. Shokef, Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial, 

Mechanical Systems and Signal Processing 153 (2021), 107479. 
[14] C. Lan, G. Hu, L. Tang, Y. Yang, Energy localization and topological protection of a locally resonant topological metamaterial for robust vibration energy 

harvesting, Journal of Applied Physics 129 (18) (2021) 184502, https://doi.org/10.1063/5.0047965. 
[15] Z. Wen, Y. Jin, P. Gao, X. Zhuang, T. Rabczuk, B. Djafari-Rouhani, Topological cavities in phononic plates for robust energy harvesting, Mechanical Systems and 

Signal Processing 162 (2022), 108047. 
[16] W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in polyacetylene, Physical review letters 42 (25) (1979) 1698–1701. 
[17] Z. Yang, B. Zhang, Acoustic type-II Weyl nodes from stacking dimerized chains, Physical review letters 117 (22) (2016), 224301. 
[18] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z.Q. Zhang, C.T. Chan, Geometric phase and band inversion in periodic acoustic systems, Nature Physics 11 (3) (2015) 

240–244. 
[19] R.K. Pal, M. Ruzzene, Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect, New Journal of Physics 19 (2) (2017) 025001, 

https://doi.org/10.1088/1367-2630/aa56a2. 
[20] Muhammad, W. Zhou, C.W. Lim, Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending 

elastic waves, International Journal of Mechanical Sciences 159 (2019) 359–372. 
[21] J. Yin, M. Ruzzene, J. Wen, D. Yu, L. Cai, L. Yue, Band transition and topological interface modes in 1D elastic phononic crystals, Scientific reports 8 (1) (2018) 

1–10. 
[22] D. Zhao, M. Xiao, C.W. Ling, C.T. Chan, K.H. Fung, Topological interface modes in local resonant acoustic systems, Physical Review B 98 (1) (2018), 014110. 

Fig. 30. (a) The base excitation is input from the left-hand side of the supercell beam lattice. The springs are connected to the ground at the 
absolutely static status. (b) The base excitation is regarded as the ground movement, i.e., the ground is deemed as a general base. In addition to the 
base excitation coming from the left-hand side of the supercell beam lattice, the springs connected to the ground are also subjected to the same 
base excitation. 

G. Hu et al.                                                                                                                                                                                                             

http://refhub.elsevier.com/S0888-3270(21)00929-8/h0005
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0010
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0010
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0020
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0020
https://doi.org/10.1016/j.cossms.2020.100853
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0030
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0030
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0035
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0035
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0040
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0045
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0045
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0050
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0055
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0060
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0060
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0065
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0065
https://doi.org/10.1063/5.0047965
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0075
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0075
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0080
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0085
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0090
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0090
https://doi.org/10.1088/1367-2630/aa56a2
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0100
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0100
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0105
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0105
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0110


Mechanical Systems and Signal Processing 169 (2022) 108598

23

[23] L. Fan, Y.e. He, X. Zhao, X.-a. Chen, Subwavelength and broadband tunable topological interface state for flexural wave in one-dimensional locally resonant 
phononic crystal, Journal of Applied Physics 127 (23) (2020) 235106, https://doi.org/10.1063/5.0001548. 

[24] S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative modulus, Journal of Physics: Condensed Matter 21 (17) (2009) 
175704, https://doi.org/10.1088/0953-8984/21/17/175704. 

[25] J.H. Oh, B. Assouar, Quasi-static stop band with flexural metamaterial having zero rotational stiffness, Scientific Reports 6 (2016) 33410. 
[26] G. Hu, L. Tang, J. Xu, C. Lan, R. Das, Metamaterial with Local Resonators Coupled by Negative Stiffness Springs for Enhanced Vibration Suppression, Journal of 

Applied Mechanics 86 (8) (2019), 081009. 
[27] D. Yu, J. Wen, H. Shen, Y. Xiao, X. Wen, Propagation of flexural wave in periodic beam on elastic foundations, Physics Letters A 376 (4) (2012) 626–630. 
[28] Y. Jin, W. Wang, B. Djafari-Rouhani, Asymmetric topological state in an elastic beam based on symmetry principle, International Journal of Mechanical Sciences 

186 (2020), 105897. 
[29] W. Wang, Y. Jin, W. Wang, B. Bonello, B. Djafari-Rouhani, R. Fleury, Robust Fano resonance in a topological mechanical beam, Physical Review B 101 (2) 

(2020), 024101. 
[30] W.J. Drugan, Wave propagation in elastic and damped structures with stabilized negative-stiffness components, Journal of the Mechanics and Physics of Solids 

106 (2017) 34–45. 
[31] A.A. Sarlis, D.T.R. Pasala, M.C. Constantinou, A.M. Reinhorn, S. Nagarajaiah, D.P. Taylor, Negative stiffness device for seismic protection of structures, Journal 

of Structural Engineering 139 (7) (2013) 1124–1133. 
[32] B.A. Fulcher, D.W. Shahan, M.R. Haberman, C. Conner Seepersad, P.S. Wilson, Analytical and experimental investigation of buckled beams as negative stiffness 

elements for passive vibration and shock isolation systems, Journal of Vibration and Acoustics 136 (3) (2014). 
[33] Y. Liu, D. Yu, L.i. Li, H. Zhao, J. Wen, X. Wen, Design guidelines for flexural wave attenuation of slender beams with local resonators, Physics Letters A 362 (5-6) 

(2007) 344–347. 
[34] H. Li, Y. Li, J. Li, Negative stiffness devices for vibration isolation applications: A review, Advances in Structural Engineering 23 (8) (2020) 1739–1755. 
[35] Y. Chen, G. Huang, C. Sun, Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting, Journal of Vibration and 

Acoustics 136 (6) (2014). 

G. Hu et al.                                                                                                                                                                                                             

https://doi.org/10.1063/5.0001548
https://doi.org/10.1088/0953-8984/21/17/175704
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0125
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0130
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0130
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0135
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0140
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0140
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0145
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0145
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0150
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0150
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0155
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0155
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0160
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0160
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0165
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0165
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0170
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0175
http://refhub.elsevier.com/S0888-3270(21)00929-8/h0175

	Deep-subwavelength interface states in mechanical systems
	1 Introduction
	2 Mass-spring model
	3 Practical structures
	3.1 Longitudinal wave propagation in rod waveguide
	3.2 Transverse wave propagation in beam waveguide

	4 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Appendix I Declaration of Competing Interest
	Appendix II Declaration of Competing Interest
	Appendix III Declaration of Competing Interest
	Appendix IV Declaration of Competing Interest
	References


